随着新一代IGBT芯片及功率密度的进一步提高,对功率电子模块及其封装工艺要求也越来越高,特别是芯片与基板的互连技术很大程度上决定了功率模块的寿命和可靠性。IGBT模块的封装技术难度高,高可靠性设计和封装工艺控制是其技术难点。IGBT模块具有使用时间长的特点,汽车级模块的使用时间可达15年。因此在封装过程中,模块对产品的可靠性和质量稳定性要求非常高。高可靠性设计需要考虑材料匹配、高效散热、低寄生参数、高集成度。 随着第三代半导体器件(如碳化硅和氮化镓等)的快速发展,对封装的性能方面提出了更为严苛的要求。银烧结技术是一种新型的高可靠性连接技术,在功率模块封装中的应用受到越来越多的关注。
银烧结技术也被称为低温连接技术(Low temperature joining technique,LTJT),作为一种新型无铅化芯片互连技术,可在低温(<250℃)条件下获得耐高温(>700℃)和高导热率(~240 W/m·K)的烧结银芯片连接界面,具有以下几方面优势:
①烧结连接层成分为银,具有优异的导电和导热性能;②由于银的熔点高达(961℃),将不会产生熔点小于300℃的软钎焊连接层中出现的典型疲劳效应,具有极高的可靠性;③所用烧结材料具有和传统软钎焊料相近的烧结温度;④烧结材料不含铅,属于环境友好型材料。
相对于焊料合金,银烧结技术可以更有效的提高大功率硅基IGBT模块的工作环境温度及使用寿命。目前,银烧结技术已受到高温功率电子领域的广泛关注,它特别适合作为高温SiC器件等宽禁带半导体功率模块的芯片互连界面材料。
银烧结技术是一种对微米级及以下的银颗粒在300℃以下进行烧结,通过原子间的扩散从而实现良好连接的技术。所用的烧结材料的基本成分是银颗粒,根据状态不同,烧结材料一般为银浆(银膏)、银膜,对应的工艺也不同:
银浆工艺流程:银浆印刷——预热烘烤——芯片贴片——加压烧结;
银膜工艺流程:芯片转印——芯片贴片——加压烧结。
芯片转印是指将芯片在银膜上压一下,利用芯片锐利的边缘,在银膜上切出一个相同面积的银膜并粘连到芯片背面。
IGBT作为重要的电力电子的核心器件,其可靠性是决定整个装置安全运行的最重要因素。由于IGBT采取了叠层封装技术,该技术不但提高了封装密度,同时也缩短了芯片之间导线的互连长度,从而提高了器件的运行速率。但也正因为采用了此结构,IGBT的可靠性受到了严重挑战。由于IGBT主要是用来实现电流的切换,会产生较大的功率损耗,因此散热是影响其可靠性的重要因素。
IGBT模块封装级的失效主要发生在结合线的连接处,芯片焊接处和基板焊接处等位置。尤其两个焊接处,是IGBT主要的热量传输通道,焊接处的焊接质量是影响其可靠性因素的重中之重。
研究表明,焊料层内的空洞会影响温度热循环,器件的散热性能降低,这也会促进温度的上升,影响期间在工作过程中的热循环,造成局部温度过高,从而加快模块的损坏。有调查表明,工作温度每上升10℃,由温度引起的失效率增加一倍。并且,应力与应变之间存在着滞回现象,在不断地温度循环当中,材料的形状实时地发生改变,这又增加了焊料层的热疲劳。因此对于IGBT封装来说,最重要的就是要降低焊料层内的空洞。
银烧结工艺是一种通过银质焊料在高温下实现的芯片与基板间的连接方式。相较于传统的软钎焊技术,银烧结具有更高的熔点、更低的电阻率和更好的热稳定性,因此被广泛应用于高功率、高温工作环境的IGBT模块制造中。
银烧结工艺的关键在于焊料的选择、烧结温度的控制以及烧结时间的把握。焊料成分的比例直接影响到烧结后的机械强度和电学性能。同时,烧结温度过高或过低都会导致焊料与芯片、基板间的结合不良,从而影响模块的可靠性。因此,优化焊料配方和烧结工艺参数是提高银烧结质量的关键。
在功率器件中,流经焊接处的热量非常高,因此需要更加注意芯片与框架连接处的热性能及其处理高温而不降低性能的能力。有热模型研究表明,使用焊料进行晶粒贴装与使用银烧结进行晶粒贴装的工艺相比,后者可将热阻降低28%。与此同时,烧结材料通常可以达到200℃-300℃,这让烧结技术成为焊接工艺理想的替代方案。此外,芯片粘接是一个极其复杂的过程,采用烧结银技术进行芯片粘接,可大大降低总制造成本,加工后无需清洗,还可缩短芯片之间的距离。
银烧结工艺烧结体具有优异的导电性、导热性、高粘接强度和高稳定性等特点,应用该工艺烧结的模块可长期工作在高温情况下;烧结工艺在芯片烧结层形成可靠的机械连接和电连接,半导体模块的热阻和内阻均会降低,整体提升模块性能及可靠性;烧结料为纯银材料,不含铅,属于环境友好型材料。
焊接层空洞的产生,主要是由于焊接材料中的挥发物留着焊接层中造成,而IGBT的芯片通常都比较大,长会达到10mm-20mm,并且DBC的尺寸通常在20mm-40mm,如此大的焊接面积,给焊接材料中的挥发物挥发造成很大困难。因此IBGT焊接层的空洞成为人们极力解决的问题。而对于IGBT高可靠性的要求,空洞率必然是封装环节的一个重要控制因素。通常小家电、普通电气装备用的IGBT要求空洞率<5%,对于轨道交通、航空航天 等领域,空洞率要求更加苛刻,甚至需要达到0.1%以下。
源浚者流长,根深者叶茂!屹立芯创凭借过硬的技术水准,以核心技术为品质支撑,运用核心专利技术进一步保证制程稳定运行,真空压力除泡系统VPS还配备了双增压系统和双温控保护系统,保证封装精度及良率。
屹立芯创真空压力除泡系统VPS采用真空与压力切换技术,可有效解决烧结过程中致密性问题,创新性使用多重多段真空压力切换系统,可根据材料特性分段设定压力与真空数值。真空压力除泡解决方案可使烧结技术实现高可靠性、低热阻、低杂散电感器件设计。
目前,真空压力除泡系统VPS凭借先进的控制系统,具有高精度、高效率、高品质、低成本、智能化、易维护等多种优势,已供应IGBT行业多家头部制造厂商,并获得客户高度认可。未来,屹立芯创将持续推出高精度、高效率、高品质、智能化的除泡应用设备,赋能行业发展。